Solve thermal explosion model by central difference and newton iteration method
نویسندگان
چکیده
In this paper, the general equation form of a thermal explosion in a vessel with boundary values is firstly presented, later the central difference method and Newton iteration method are used to solve the relevant partial differential equations in one-dimensional and two-dimensional forms, finally the order of convergence of the numerical scheme is verified by numerical experiments and the experiment results are provided.
منابع مشابه
Forced Convection Heat Transfer of Non-Newtonian Fluids Through Circular Ducts
The Galerkin finite element method is used to solve the three dimensional continuity, momentum and energy equations for laminar Newtonian and power-law model non-Newtonian flow through horizontal circular tube. The governing equations are non-dimensionalized with respect to specific variables and converted into algebraic equations using appropriate elements. To accelerate convergence a combinat...
متن کاملForced Convection Heat Transfer of Non-Newtonian Fluids Through Circular Ducts
The Galerkin finite element method is used to solve the three dimensional continuity, momentum and energy equations for laminar Newtonian and power-law model non-Newtonian flow through horizontal circular tube. The governing equations are non-dimensionalized with respect to specific variables and converted into algebraic equations using appropriate elements. To accelerate convergence a combinat...
متن کاملAn efficient improvement of the Newton method for solving nonconvex optimization problems
Newton method is one of the most famous numerical methods among the line search methods to minimize functions. It is well known that the search direction and step length play important roles in this class of methods to solve optimization problems. In this investigation, a new modification of the Newton method to solve unconstrained optimization problems is presented. The significant ...
متن کاملApplication of the Central-Difference with Half- Sweep Gauss-Seidel Method for Solving First Order Linear Fredholm Integro-Differential Equations
The objective of this paper is to analyse the application of the Half-Sweep Gauss-Seidel (HSGS) method by using the Half-sweep approximation equation based on central difference (CD) and repeated trapezoidal (RT) formulas to solve linear fredholm integro-differential equations of first order. The formulation and implementation of the Full-Sweep Gauss-Seidel (FSGS) and HalfSweep Gauss-Seidel (HS...
متن کاملMultiple solutions of a nonlinear reactive transport model using least square pseudo-spectral collocation method
The recognition and the calculation of all branches of solutions of the nonlinear boundary value problems is difficult obviously. The complexity of this issue goes back to the being nonlinearity of the problem. Regarding this matter, this paper considers steady state reactive transport model which does not have exact closed-form solution and discovers existence of dual or triple solutions in so...
متن کامل